Subset Selection Based on Bio - Inspired Algorithms

نویسندگان

  • CHULMIN YUN
  • BYONGHWA OH
  • JIHOON YANG
  • JONGHO NANG
چکیده

Many feature subset selection algorithms have been proposed and discussed for years. However, the problem of finding the optimal feature subset from full data still remains to be a difficult problem. In this paper, we propose novel methods to find the relevant feature subset by using biologically-inspired algorithms such as Genetic Algorithm and Particle Swarm Optimization. We also propose a variant of the approach considering the significance of each feature. We verified the performance of the proposed methods by experiments with various real-world datasets. Our feature selection methods based on the biologically-inspired algorithms produced better performance than other methods in terms of the classification accuracy and the feature relevance. In particular, the modified method considering feature significance demonstrated even more improved performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Routing Improvement for Vehicular Ad Hoc Networks (VANETs) Using Nature Inspired Algorithms

are a subset of MANETs in which vehicles are considered as network clients. These networks have been created to communicate between vehicles and traffic control on the roads. have similar features to MANETs and their main special property is the high-speed node mobility which makes a quick change of the network. The rapid change of network topology is a major challenge in routing. One of the we...

متن کامل

Hybrid Bio-Inspired Clustering Algorithm for Energy Efficient Wireless Sensor Networks

In order to achieve the sensing, communication and processing tasks of Wireless Sensor Networks, an energy-efficient routing protocol is required to manage the dissipated energy of the network and to minimalize the traffic and the overhead during the data transmission stages. Clustering is the most common technique to balance energy consumption amongst all sensor nodes throughout the network. I...

متن کامل

Parallel Processing and Bio-inspired Computing for Biomedical Image Registration Invited Article

Image Registration (IR) is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimizatio...

متن کامل

ADVANCES IN INTELLIGENT DATA PROCESSING AND ANALYSIS Hybrid evolutionary algorithms for classification data mining

In this paper, we propose novel methods to find the best relevant feature subset using fuzzy rough set-based attribute subset selection with biologically inspired algorithm search such as ant colony and particle swarm optimization and the principles of an evolutionary process. We then propose a hybrid fuzzy rough with K-nearest neighbor (KNN)-based classifier (FRNN) to classify the patterns in ...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011